By incorporating on-chip multiplication gain, the electron multiplying CCD achieves, in an all solid-state sensor, the single-photon detection sensitivity typical of intensified or electron-bombarded CCDs at much lower cost and without compromising the quantum efficiency and resolution characteristics of the conventional CCD structure.
Objective: UPlanSApo 100x oil/1.40 | Exposure: 400 ms |
Microscope: Olympus DSU/IX81 | Gain: 3 |
Camera: Hamamatsu ImagEM | Interval: 5 s |
The modifications to molecules that take place in the Golgi apparatus occur in an orderly fashion. Each Golgi stack has two distinct ends, or faces. The cis face of a Golgi stack is the end of the organelle where substances enter from the endoplasmic reticulum for processing, while the trans face is where they exit in the form of smaller detached vesicles. Consequently, the cis face is found near the endoplasmic reticulum, from whence most of the material it receives comes, and the trans face is positioned near the plasma membrane of the cell, to where many of the substances it modifies are shipped. The chemical make-up of each face is different and the enzymes contained in the lumens (inner open spaces) of the cisternae between the faces are distinctive. In the digital video presented in this section, opossum kidney epithelial cells (OK line) are visualized expressing a fusion of mEGFP with a targeting signal to localize the chimera to the Golgi apparatus (or complex).