By incorporating on-chip multiplication gain, the electron multiplying CCD achieves, in an all solid-state sensor, the single-photon detection sensitivity typical of intensified or electron-bombarded CCDs at much lower cost and without compromising the quantum efficiency and resolution characteristics of the conventional CCD structure.
Objective: UPlanSApo 100x oil/1.40 | Exposure: 500 ms |
Microscope: Olympus DSU/IX81 | Gain: 3 |
Camera: Hamamatsu ImagEM | Interval: 2 s |
Most proteins exported from the endoplasmic reticulum exit the organelle in vesicles budded from the smooth portion, which has a more even appearance than rough endoplasmic reticulum when viewed through the electron microscope because of the lack of ribosomes. The smooth endoplasmic reticulum in most cells is much less extensive than the rough endoplasmic reticulum and is sometimes alternatively termed transitional. Smooth endoplasmic reticulum is chiefly involved, however, with the production of lipids (fats), building blocks for carbohydrate metabolism, and the detoxification of drugs and poisons. Therefore, in some specialized cells, such as those that are occupied chiefly in lipid and carbohydrate metabolism (brain and muscle) or detoxification (liver), the smooth endoplasmic reticulum is much more extensive and is crucial to cellular function. Smooth endoplasmic reticulum also plays a role in various cellular activities through its storage of calcium and involvement in calcium metabolism. In muscle cells, smooth endoplasmic reticulum releases calcium to trigger muscle contractions. The digital video presented in this section illustrates a binned high-magnification view of the endoplasmic reticulum of a human osteosarcoma (U2OS line) cell expressing EYFP fused to peptide signals that transport the fluorescent marker to the endoplasmic reticulum.